Does The Data Show It's Working?

April 12, 2020

Does The Data Show It's Working?

Charts can do a whole lot of things. It’s easy to say “it’s science” or “we’re data-driven” because there’s a chart present, but without understanding where the data came from or how it’s counted it’s pretty hard to know for sure what the chart says: other than that particular measure has increased or decreased over the allotted period of time.

Take for example, kids’ messy bedrooms. If the standard measure was the number of clothes on the floor, there are a few ways to graph and interpret the results. For example, we could record the change in the number of clothes on the floor over time.

Whether you’re using a bar or a line chart, it’s pretty easy to visualize an increase in clothes over time. What’s more difficult is interpreting what it means. An optimist could use the chart as evidence that the child has been more active: more clothes signifies more activity, which represents healthy growing children. Alternatively, the same chart could be used to represent an increase in laziness over time.

Therefore, when trying to fix the problem, what’s the best way to know if the measures are really working? The first step has nothing to do with the solution. It’s mostly there to show to all of those involved what the definitions and measures are going to be.

Agree on the measures

It doesn’t matter if you're using the first or second interpretation above, or something else altogether. What matters is, that those involved, agree on what each measure means. So the folks you’re reporting to know, for example, might believe that those increasing clothes on the ground means more laziness. Additionally, your kids might know that you’re tracking their activity, and that’s what you think it means. 

This has a significant impact on your overall performance, because by setting clear ground rules from beforehand, you’re eliminating debate once the work or experiment is completed.

Agree on the time period for measurement

Setting a firm deadline for evaluation, helps to align the focus across the board. Everyone involved knows what to expect and when. This way there’s no surprise when a serious evaluation comes around.

More often than not, organizations agree with point 1, but fail to set a clear period of measurement, so the results are disregarded by pointing out that ‘we didn’t have enough time.’  That’s something that can be easily discussed from beforehand, so the measurement period can be adjusted appropriately.

----

As excited as we get about data, the context is as much, if not more important than the figures themselves. This is why leading organizations spend millions of dollars adjusting and standardizing their measures before making big decisions. It’s critical to know what the numbers really mean before giving anything significant a real shot.  

That way, when all is said and done there’s no doubt about whether or not what you’re testing for is really working.


Latest posts